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1. Introduction

This report describes the last phase of our work under grant DAAL03-91-G-0312. In this
phase we have applied some of the concepts and devices developed earlier to the
construction of a novel optical processor. The system described here extracts by its own
meaningful temporal features from its input environment.

A temporal feature extractor detects the main characterizing temporal features within a
more or less structured signal. The task it accomplishes is better understood by using a
simple example. Imagine to tune across a short-wave radio band. It will be easy to
recognize a channel that carries Morse code; even without knowing the code. That is
because Morse code consists of a simple set of temporal features (a dot, a dash and two
pause lengths), and a Morse signal is characterized by their repeated occurrences. It does
not take very long for the brain to identify the features as the dominant content of the
received signal. The task of our feature extractor is just this: to discover' on its own the
dominant features in a temporal signal characterized by repetitive entities [1, 2]. This task is
a precursor to the more complex processing required for the self-organized feature
extraction and recognition of audio and sonar signals.

In a previous project phase we did implement an optical classifier for the recognition
of acoustic signals [3] which was based on a time-delay neural network architecture [4].
This system required the presence of a teaching signal. Unlike the acoustic processor, the
present temporal extractor is self-organizing [5-7] and does not need a teacher. This
approach is most helpful when, like in the currently studied problem, one does not have a

priori knowledge of what or when to learn from the input environment.

2. Highlights

A model for temporal feature extraction is discussed and its optical hardware

implementation is described in detail. The extraction of features within both binary and




analog temporal signals modulated on a Gaussian beam are demonstrated. The separation
of two different temporal signals into different output ports through the compétitive

dynamics in the optical resonator system is also successfully verified.

3. Basic Principles of the Optical System

The extraction of temporal features can be achieved using the optical architecture, which
basic scheme is shown in Fig.1. The system contains two basic processing elements, the
gain crystal (long-term memory) and the optical delay-line [8] which provides a short-term
memory element. The system operation makes use of the time-domain cooperative
interactions provided by the delay line in addition to the nonlinear photorefractive dynamics
in optical resonators [9].

In Fig.1 each ring corresponds to a spatial mode in the optical resonator. The group
of modes share a photorefractive gain crystal and are arranged along the delay coordinates
of the optical delay line. At each moment in time, the delay line temporarily stores the
optical field of each mode (e.g., mode j), and later injects the stored field into the neighbor

mode (j+1). Its action can be expressed as
Ejﬂ(t)=Gj+IS(t)+[,LEj(t—z'), ¢=1, ..., n-1) §))

where Ej(1) is the optical field within mode j at time ¢, Gj is a normalized grating
component in the gain crystal, and O<u<1 is a numerical factor characterizing the decay
along the delay line. The temporal signal S() is imposed on a Gaussian pump beam as
modulation on its amplitude and/or phase; this serves as input to the system. The grating G;
in the gain crystal scatter the pump beam into the jth resonator mode; this part of the light
contains information about the present input. In addition, each mode receives injected light
from the delay line which contains information ébout past input signals. Note that for
clarity of presentation a spatially discrete array of » modes with time delay 7 between two

neighboring modes has been assumed. However, this is not necessarily the case; the modes




can also be continuously distributed in space, as in the experiments described later. Using
Eq.(1), the total optical field Ej(r) in the jth mode at time £ can be written as
J .
Ei()= Y GS¢t-jr+krypl ™, (=1, .., n). Q)
k=1

From Eq.(2) it is clear that given a set of gratings, the optical field in a mode is an inner
product between the gratings (in space) and the input signal (in time). Thus, the gratings
can be thought of as defining a temporal feature for the system. In general, the maximum
time delay determines the length of temporal features that the resonator can be sensitive to,
and the bandwidth of the optical delay line defines the minimum time-scale for input signal
changes.

The photorefractive grating G in the gain crystal starts initially from noise. It grows
when oscillations in the resonator begin to build up. The above unidirectional coupling in
the delay element (Eq. (1)) modifies the spatial structure of the collection of all the coupled
modes. We refer to this mode collection as a chronomode. The final equilibrium structure
and the equilibrium grating (G ...G) are determined by the temporal characteristics of the
input signal S(z) of interest. In other words, the gain crystal grating matches the particular
chronomode spatial structure corresponding to the dominant temporal features. The grating
can be thought of as a matched filter, in the sense that it permits resonator oscillation only
when the dominant feature is present at the input. For non-dominant features, that is
features occurring only rarely, oscillation is inhibited.

Fig.1 shows a single group of modes, that is a single chronomode. The system can
contain multiple chronomodes, each arranged along a different delay line. If the
chronomodes share a common gain crystal, each of them can learn a particular temporal
feature of the input environment. Fig.2 shows schematically two chronomodes competing
in the central gain crystal. Each resonator ring in Fig.2 is expected to respond strongly

when its learned feature is presented at the input.




We should note that the simple optical schemes described above can be translated in
equivalent neural network architectures including time delays within sets of output units.
Our analysis of the network models, of which we skip details here, has proven very helpful
to qualitatively predict the general behavior of the actual architectures under consideration.

k]

4. Hardware Implementation and Experimental Verification

We first describe the set-up shown in Fig. 3 used to implement the self-organizing
temporal feature extractor. All the beams shown are from a single frequency, cw Ar-ion
laser (A = 514 nm), and are p-polarized. The system consists of an optical resonator
formed between the rotating photorefractive delay line crystal (BaTiO3 #1) [8] and the
feedback mirror M;. The resonator is pumped by a modulated Gaussian beam entering the
gain crystal (450-cut BaTiO3, #3) which lies in the image plane of crystal #1. Note that the
photorefractive delay line works in the phase-conjugate configuration, the counter-
propagating pump beam is generated by a phase conjugate mirror implemented by four-
wave mixing in the crystal BaTiO3 #2.

Each mode in the resonator finishes a round trip by tracing the same path twice, and
reflecting twice at crystal #1. The optical phase is reproduced after one round trip, therefore
the resonance condition is maintained independent of the optical length of the beam path.
The time delay coordinate of the delay line is along a cone [8], a short portion of it
essentially lie along the direction perpendicular to the plane of Fig. 3. A group of modes
distributed along this vertical direction defines a chronomode in the experiment. Its
transverse profile is constrained by a pair of slot apertures in the horizontal plane. Fig.3
shows two chronomodes identified by the differently dashed lines. In general the system
can have many chronomodes as long as there is sufficient gain in the pump crystal (#3) so
that all can be above threshold and oscillate. The vertical length of the slot apertures defines
the angular range over which modes enter the delay line and gain crystals, which effectively

defines the maximum time delay within the system.




Note that the scheme of Fig.3 is not unique. Other architectures have been
successfully tested. All of them share the common characteristics of containing a long term
memory gain crystal and a short term memory rotating crystal within differently designed
photorefractive resonators. The scheme of Fig.3 was found to be the most robust because
ampliﬁchtion occurs in the gain crystal for light traveling in both directions along the
resonator path. This decreases the oscillation threshold.

We have performed experiments to verify the operation of the signal processor using
binary, analog as well as partially noisy signals. We could verify that the following two
properties are satisfied:

(1) If a certain temporal feature is clearly dominant, a system containing a single

chronomode will select that feature at the expense of all other non-dominant ones.

(2) In a system with two competing chronomodes, each of two equally dominant

features is associated with one of the chronomodes. If there is only one
chronomode an ambiguous state may result.
In the experiments a dominant feature (sub-signal) is the one which is presented most often
within the input signal. By changing the rate of occurrence of a selected sub-signal the
input can be deliberately biased in any wanted direction. We present below the results of
two experiments which demonstrate the two above properties. Deep experimental details
are skipped, they can be found in the enclosed preprint of Ref. [1].

Fig.4 shows the results of an experiment demonstrating property (1), the learning of
the most-frequently presented sub-signal within a single-chronomode system. The phase-
modulated binary signals defined in the caption are used. Note that by switching from + to
- the pump beam gets opposite phase but keeps the same intensity. In Fig.4 the total
intensity of the resonator is plotted as a function of time as different sub-signals are applied
at the input. The figure shows the equilibrium state which is reached after about 20 learning
cycles. In the experiment of Fig.4a sub-signal S} dominates S3 by a ratio of 2 to 1. As

expected, in this case the resonator response is much stronger while Sy is applied. In the




opposite case (Fig.4b) S2 dominates by 2 to 1 and the chronomode responds now to 5.
Note that, as a sub-signal is presented at the input, the resonator response grows
continually from the beginning till the end. This is an interesting property of the self-
organized state. The system can be thought of as being able to accumulate evidence
continuailly over time, which is somewhat similar to the human ability to continually
anticipate and make predictions as we listen to, e.g., speech or music. Other types of signal
processors such as time-delay neural network [3, 4] do not posses this property.

Next we demonstrate property (2). In this experiment the resonator contains two pairs
of apertures and thus two chronomodes can oscillate. This situation corresponds to the
scheme of Fig. 2. Analog sub-signals with strong random components overlapping regular
sinusoidal functions are used. The form of the two sub-signals (Signal 1 and Signal 2) to
be learned is shown in Fig.5(a). Fig. 5(b+c) show the response of the two chronomodes
in the equilibrium state. Each image corresponds to the resonator intensity profile at the
moment when a signal has just been applied at the input. The pictures are taken at the place
of the detector in Fig. 3 using a CCD camera. One sees that one of the chronomodes
responds strongly to Signal 1 and the other to Signal 2. Each chronomode has learned to
associate with a particular sub-signal. Note that in this experiment the basis for the
recognition is given by the highly autocorrelated sinusoidal functions underlying the two
signals. Completely noisy and unstructured signals cannot be learned.

We have studied different expansion schemes for the system of Fig.3. In order to use
temporally and spatially modulated signals at the system input the electro-optic modulator
has been replaced by a nematic liquid crystal spatial light modulator (SLM) taken froma TV
projector. It was possible to get oscillation in the resonator when a short video movie was
played at the input. However, only poor discrimination among similar movies could be
achieved. The reason for that was the difficulty to obtain zero-mean input signals using the
available SLM’s. Non zero-mean signals tend to be characterized by their large zero order

component. By choosing a proper configuration we were successful in constructing zero-




mean signals using conventional SLM’s, however at the costs of an unaffordable waste of
light. In contrast, spatially and temporal modulated zero-mean signals with large light
intensity can be easily obtained when a discrete small number of independently time-
modulated Gaussian beams are used instead of a SLM. Excellent signal discrimination
could be obtained using two such beams for pumping a system similar to the one in Fig.3.

This approach is relevant for potential system expansions through resonator cascading.

5. Conclusions

In the final phase of the present research project we have developed a self-organizing
optical processor which can extract meaningful temporal features from its input. The
system makes use of the delay-line device developed earlier [8]. Like the previously
investigated network for acoustic signal recognition [3], also the present system functions
through the interaction of short- and long-term memories. However, the imbedding of the
two elements in a photorefractive resonator makes the current system suitable for
unsupervised learning. We have experimentally demonstrated the extraction of both binary -
and analog features, as well as the separation of two features into different outputs.

In a Morse signal the letters of the alphabet are comprised of a short sequence of basic
Morse features; words are comprised of a sequence of letters, and so on. Similarly,
complex temporal signals such as speech or music are characterized by a given hierarchy of
short and long temporal features, where longer features are comprised of the basic (short)
ones. In this work we have developed a processor which detects the most basic features.
The unsupervised identification of complex signals should be possible using a cascaded

configuration of many such processors.
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Steady state resonator response after presentation with two binary sub-signals
S1and S2. Sl=(+-+-+-+-+-+-+-+-), S2=(+-++---+++++----). 2) S1 dominant, it
occurs twice more often than S2, the resonator learns S1. b) S2 is dominant, the
resonator learns S2. The lower traces indicate which sub-signal is present at the
input at a given time. The 16 bit sequences begin at the left edges and end at the
right edges of the square pulses.




Signal 1 Signal 2

200 ms

Fig. 5:  Self-organized separation of two analog temporal sub-signals into
two chronomodes. (a) Modulation of the input signals 1 and 2. The two signals
are presented alternately. (b) Istantaneous profile of the two chronomodes in
response to Signal 1. (c) Same in response to Signal 2. The lower chronomode
has learned to be associated with Signal 1, the upper with Signal 2.




